

Hominid Brain Evolution

P. Thomas Schoenemann

INTRODUCTION

Understanding brain evolution involves identifying both the physical changes that occurred, as well as understanding the reasons for these changes. There are two ways in which inferences about evolutionary changes are made. By comparing a species of interest against other modern species, one can determine what exactly is different, and in what way it is different. By studying the fossil record, one assesses the time-course of evolutionary changes. Both of these approaches have strengths and weaknesses. Significantly more data are available from modern forms, both in terms of the number of species one can assess and the specific details and subtleties of the adaptations studied, parts of the brain, connectivity between regions, neurotransmitter systems, cytoarchitecture, integrated functioning, and so forth. However, one cannot unequivocally reconstruct the common ancestral states with this method because modern forms are themselves the end-products of separate evolutionary lineages. In some cases it appears that many lineages have evolved in parallel from a common ancestor different from any living species. In addition, one cannot determine the time-course of evolutionary change from a comparative analysis of the anatomy alone. For this, one needs the fossil record. The time-course may hold clues about the functional significance of brain evolution, depending on the timing and sequence of other features or factors that might be related to brain evolution (e.g., climate, technological, and biological changes). However, fossil data on brain evolution are limited, since brains themselves do not fossilize, leaving us with only their surrounding braincases (if we are even that lucky). Thus, both approaches, comparing modern species and assessing fossil evidence, are essential. Since there was one actual evolutionary history, our inferences about what happened – however derived – should all point towards the same conclusions if we are truly on the right track (Vincent Sarich, personal communication).

A Companion to Paleoanthropology, First Edition. Edited by David R. Begun.

^{© 2013} Blackwell Publishing Ltd. Published 2013 by Blackwell Publishing Ltd.

BRAIN SCALING

The earliest comparative studies of brain and body size revealed that bigger-bodied species tended to have bigger brains. The relationship approximates a power function of the form: $[brain]=k[body]^a$. Log transforming both variables results in a (reasonably) straight line: [log brain]=[log k]+a[log body]. Thus, the slope of the line describing the relationship between log brain and log body represents the exponent of the power function. Empirical studies of mammals show that the relationship is statistically very strong (e.g., r=0.95; Martin 1981). Nevertheless, the 95 percent confidence intervals for mammals encompass at least a 10-fold range in possible brain sizes at a given body size (Schoenemann 2006). This indicates that whatever influence body size might have on brain size, it is actually relatively weak. This is consistent with experiments showing that selection on body weight causes very little change in brain weight, which should not be the case if there really were a strong intrinsic developmental constraint tying brain size with body size (Atchley 1984; Riska et al. 1984).

Empirically, the power function exponent describing brain/body scaling appears to be close to 0.76 (Martin 1981), significantly less than 1 (isometry). There are two major explanations that have been offered for this pattern. Jerison (1973) suggests that brains serve to create a model of the external world, based on the array of sensory inputs they obtain. He believes the most important inputs for this are somatosensory (touch, pain, heat, body position), which correspond to information from the body surface. Since surface area scales to the two-thirds power of volume, brains should scale at the two-thirds power of body size. He later refined this model to argue that only the cortex (which is devoted to modeling the external world) should scale with body surface area, not the whole brain (Jerison 1988). Further, since cortical thickness also increases with brain size (at about the 0.17 power), brain size would actually be expected to increase at greater than the two-thirds power of body size (Jerison 1988). By combining known empirical scaling estimates for both brain-to-body size (0.76; Martin 1981), and brain-to-cortical surface area (0.91; Jerison 1982), one can directly predict how cortical surface area should scale with body size:

> If: [cortical surface area] = k_1 [brain size]^{0.91} [brain size] = k_2 [body size]^{0.76} Then: [cortical surface area] = k_1 [k_2 [body size]^{0.76}]^{0.91} = k_3 [body size]^{0.69}

This exponent (0.69) is very close to the two-thirds exponent predicted by Jerison.

One problem with this model is that cross-sectional area of the spinal cord, which is as good a proxy as any for the number of afferent and efferent fibers connecting the brain with the body surface, actually scales much lower than the two-thirds power of body size (Fox and Wilczynski 1986). The model also requires that the there be a simple, isometric relationship between cortical volume and the complexity of processing done on these sensory inputs. Exactly how this type of processing is accomplished at the neural level is unknown at present, however. The other explanation for the 0.76 power scaling of brain-to-body size is related to the fact that total metabolic resources also scale with body size at the 0.76 power in mammals. Since brain tissue is particularly metabolically expensive (Hofman 1983; Aiello and Wheeler 1995), total metabolic resources would be an important upper constraint on brain size (Martin 1981; Armstrong 1983). Because of various types of evolutionary cognitive "arms races", species may be expected to tend towards larger brain sizes generally, but the most adaptive brain size for a given species would be highly niche-dependent. This model is consistent with the finding of a substantial degree of variation in brain size at a given body size.¹

Because both of these hypotheses predict approximately the same scaling relationship between brain and body size, it is not possible, based on the scaling relationship itself, to judge which is more likely (Deacon 1990). From a theoretical perspective, however, it is unclear why the degree of complexity of an organism's model of the world should necessarily scale with its body surface area, whereas the metabolic costs of large brains are obvious. It may be that the association between cortex size and body surface area is accidental.

Regardless of why it occurs, the empirical relationship between brain and body size has led to an emphasis on controlling for body size when comparing brain size between species. The most widely used is probably Jerison's (1973) Encephalization Quotient (EQ), which is simply the actual brain size of a species divided by the (empirically-derived) estimate of the average brain size for a mammal of that body size. Human EQs are in the 5–7 range (depending on the exact slope of the empirical line derived for mammals). The *behavioral* relevance of EQ over absolute brain size is highly questionable, however (see below).

COMPARATIVE PERSPECTIVES ON BRAIN EVOLUTION

Most comparative studies have primarily focused on how humans differ from expectations based on primate trends, though ape disproportions have also been highlighted when found. These studies have clearly shown that the human brain is not simply an enlarged version of a chimpanzee brain (Deacon 1992; Rilling 2006). Some of the differences appear to be allometric (i.e., the result of predictable scaling patterns between parts), while others do not. Both types of differences probably have nontrivial behavioral implications (contrary to what is often assumed).

An example of an important difference explained by allometry is the size of the neocortex. In humans, it accounts for over 80 percent of the entire size of the brain, compared with less than half in some primates (Schoenemann 2009). This appears to be mostly a predictable result of brain size increase: humans have about as much neocortex as one would predict given a primate brain of our brain size. Another such pattern involves the proportion of the cortex that is made up of white matter (primarily connective axons) vs. gray matter (primarily dendrites and neuron cell bodies). More than 40 percent of the human cerebral cortex is white matter compared with only 21 percent of macaque (*Macaca mulatta*) brains. This turns out to be a function of cerebral cortex size (Hofman 1985). Interestingly, the empirical relationship suggests that white matter does not actually increase fast enough to keep areas as directly interconnected with one another in larger brains. This means that there is an inherent

structural bias towards increasing cortical specialization as brains increase in size. Based on published diagrams of currently-mapped, cytoarchitecturally-defined cortical areas for 19 mammal species, Changizi and Shimojo (2005) showed that the number of distinct cortical areas appears to be a function of increasing brain size. Using the equation derived from all mammals, humans should have approximately 150 cortical areas, compared with only approximately 100 in chimpanzees and approximately 75 in the largest-brained monkeys (e.g., *Papio papio*). Although data for only three primates were available (*Callithrix, Aotus, Macaca*), they all had greater estimated total numbers of cortical areas than the general mammal prediction, suggesting that among mammals primates might be particularly biased towards cortical specialization. In any case, even though the trend towards increasing cortical specialization is 'explained' by allometry, it nevertheless has fundamentally important behavioral implications (Schoenemann 2009).

Within the neocortex itself, the size of functional areas appear to be relatively unconstrained by allometry. The relative size of particular neocortical areas in mammals is predicted by the behavioral specializations of a given species. About half of the neocortex of the echo-locating Ghost Bat (Macroderma gigas) is involved in processing auditory information, for example (Krubitzer 1995). In humans, at least three neocortical areas appear to be significantly smaller than expected, given a primate brain our size (calculated from Blinkov and Glezer 1968; Stephan et al. 1981): primary motor cortex (approximately 33 percent as large as predicted), premotor (approximately 60 percent as large), and primary visual (V1; approximately 60 percent as large). Since our neocortex as a whole is not smaller than expected, some other parts must therefore be larger. The human frontal cortex is not larger overall (Semendeferi et al. 2002), but because two of its subdivisions are significantly smaller than expected (premotor and primary motor), the remainder must be significantly larger. Most empirical studies, dating back to Brodmann's initial cytoarchitectural studies (Brodmann 1909), seem to support this view (see review in Schoenemann 2006). The temporal lobe also appears to be somewhat larger than predicted, though apparently not by as much as the prefrontal (Rilling and Seligman 2002). Although comparative studies of the parietal lobe area are lacking, morphometric studies of endocranial surfaces suggest significant changes in this area as well (Bruner 2004).

Some non-neocortical areas also show interesting patterns. The olfactory bulb (sense of smell) is only approximately 31 percent as large as predicted (data from Stephan et al. 1981). The cerebellum, though slightly smaller than expected for a primate brain size as large as ours, is still almost three times larger than expected based on body size (Rilling and Insel 1998; MacLeod et al. 2003). Apes as a group appear to have undergone a grade shift in cerebellar proportions. Compared with monkeys, their cerebellar hemispheres are 2.7 times larger than expected for their cerebellar vermis sizes (MacLeod et al. 2003). With respect to body size, apes have cerebellar hemispheres approximately 2.4 times larger than monkeys, and humans 5.8 times larger (MacLeod et al. 2003). This is intriguing because the cerebellum has long been known to play a major role in moderating motor control, and as such would be expected to scale only with body size.

As with the cerebellum, the basal ganglia in humans are only approximately 65 percent as large as predicted for a primate brain our size (Stephan et al. 1981; Schoenemann 1997), but about twice as large with respect to body size. The basal

ganglia are known to be involved in a variety of motor functions, but they have also been implicated in language processing (Hochstadt et al. 2006), suggesting that the increase over body size predictions might have important behavioral consequences.

Potentially independent of gross anatomical changes, there are important suggestions of differences in the existence, elaboration, and/or organization of neuronal cell types, which is currently the focus of much study (Preuss 2006; Sherwood and Hof 2007). In apes and humans, unique patterns are found in anterior cingulate cortex (attentional and emotional processing), primary motor cortex (motor control), and frontoinsular cortex (involved in social cognition) (Sherwood and Hof 2007). One particular type of neuron (CR-ir pyramidal) is found in the primary motor and anterior cingulate cortices of both apes and humans, but only humans appear to have them in the anterior paracingulate cortex (Sherwood and Hof 2007). There also appears to have been a change in the visual pathway in humans, particularly the fibers that carry information about motion and luminance contrast (Preuss and Coleman 2002). The behavioral significance of these uniquely human attributes – if any – are difficult to establish at present.

FOSSIL RECORD OF BRAIN EVOLUTION

Larger brains appear to have evolved independently several times in many different animal lineages. Birds, for example, are more encephalized than their reptile ancestors. The earliest mammals were significantly less encephalized than modern mammals (Jerison 1973). Delphinids (dolphins and killer whales) have some of the largest relative brain sizes among all living mammals, yet their closest relatives among terrestrial mammals are relatively small-brained artiodactyls (Jerison 1973; Murphy et al. 2004). Relative brain size in both carnivores and ungulates have increased since the Paleogene, with carnivore relative brain size outpacing that of ungulates in each major geologic time period (Jerison 1973), presumably representing some sort of cognitive evolutionary arms race.

The earliest primates resemble modern prosimians, and date back to the early Eocene (approximately 55–50 Ma; Fleagle 1999; see Silcox, this volume, Chapter 18). There are three species from this time period for which brain size and body size has been estimated, *Tetonius homunculus, Smilodectes gracilis* and *Adapis parisiensis* (Radinsky 1977). At 1.5 cc, *Tetonius homunculus* had a brain slightly smaller than that of the smallest-brained living primate, the mouse lemur (*Microcebus murinus*), even though it probably weighed about three times as much (Radinsky 1977; Stephan et al. 1981). Both *Smilodectes gracilis* and *Adapis parisiensis* had brains within the range of modern primates, but appeared to have had significantly larger body sizes than any living primate with similar sized brains (Figure 8.1a, Table 8.1). These Early Eocene primate specimens thus had lower EQs than any modern primate (about half the size of modern mammals). Thus, it appears that brain size increased significantly in the primate lineage as a whole over the past 50–55 Ma. With respect to brain morphology, these early primates appear similar to early mammals in having only the lateral sulcus (or Sylvian fissure; Radinsky 1977; Szalay 1969).

Relative brain size appears to have further increased in both platyrrhines (New World monkeys) and catarrhines (Old World monkeys, apes and humans) independently.

Figure 8.1 Evolution of cranial capacity. (a) Cranial capacity vs. body size in modern and fossil primates. Data from Table 8.1. Average mammal: cranial capacity (cc) = 0059(body mass g)⁰⁷⁶ (based on Martin 1981); average primate: cranial capacity (cc) = 0087(body mass g)⁰⁷⁷ (data from Stephan et al. 1981). (b) Evolution of primate cranial capacity. Data from Table 8.2. Best-fit third-order polynomial of anthropoids through *Homo sapiens sapiens*, excluding robust australopithecines (*Paranthropus aethiopicus*, *P. boisei*, and *P. robustus*) and immature specimens: cranial capacity (cc) = 76814(log Ma)³ – 53694(log Ma)² – 68144(log Ma) + 86331 ($r^2 = 090$, N =183).

Specimen	Putative taxon	Location	Age (Ma)	Cranial capacity (cc)	Body mass (g)ª	Developmental age ^h	Sources
AMNH 4194	Tetonius homunculus	United States	55	1.5	160		1
YPM 12152 & USNM 17997	Smilodectes gracilis	United States	52.5	9.5	2540		1; date: 2
BM 20192 & AMNH 11045	Adapis parisiensis	France	52.5	9.0	2540		1
Cambridge M.538	Adapis parisiensis	France	52.5	8.8	2000		3
YPM 18302	Necrolemur antiquus	France	37.5	4.4	300		1
UT 40688-7	Rooneyia viejaensis	United States	33	7.5	500		1
CGM 40237	Aegyptopithecus zeuxis	Egypt	29.5	21.2	6403		body: 4; brain: 5
CGM 85785	Aegyptopithecus zeuxis	Egypt	29.5	14.6	2512		body: 4; brain: 5
DPC 18651	Parapithecus grangeri	Egypt	33	10	2995		6
KNM-RU 7290	Proconsul	Kenya	18	168	16,000		7
RUD 77	Dryopithecus	Hungary	9.85	326	25,450		4; date: 8
RUD 200	Dryopithecus	Hungary	9.85	305	21,100		4; date: 8
BAC-208	Oreopithecus	Italy	8	112	15,000		4
TM 266- 01-060-1	Sahelanthropus tchadensis	Chad	6-5	365			9
ARA-VP-6/500	Ardipithecus ramidus	Ethiopia	4.4	300	50,000		10; 11
KNM-WT 40000	Kenyanthropus platyops	Kenya	3.5	400-450			12
AL 162-28	Australopithecus afarensis	Ethiopia	3.18	400			
AL 288-1	Australopithecus afarensis	Ethiopia	3.0	387			
AL 333-105	Australopithecus afarensis	Ethiopia	3.18	400		juvenile	
AL 333-45	Australopithecus afarensis	Ethiopia	3.18	492			
AL 444-2	Australopithecus afarensis	Ethiopia	3	550			
Dikika 1-1	Australopithecus afarensis	Ethiopia	3.3-3.4	275-300			12
KNM-WT 17000	Paranthropus aethiopicus	Kenya	2.5	410	37,666		
KNM-ER 406	Paranthropus boisei	Kenya	1.5	500	69,843		
KNM-ER 407	Paranthropus boisei	Kenya	1.85	510			

Table 8.1 Estimated cranial capacities and body weights for primate fossils.

KNM-ER 732	Paranthropus boisei	Kenya	1.7	500	31,979	
KINM-W1 13/50	Paranthropus boisei	Kenya Eshiania	1.7	4/5		
Konso (KGA-10-525)	Paranthropus boisei	Ethiopia	1.4	545	57 602	
OH 5	Paranthropus boisei	Tanzania	1.9	520	57,005	
SK 54	Paranthropus robustus	South Africa	1.5	500		juvenile
SK 859	Paranthropus robustus	South Africa	1.5	450		juvenile
SK 1585	Paranthropus robustus	South Africa	1.5	530		
MLD 1	Australopithecus africanus	South Africa	3.1	510		
MLD 37/38	Australopithecus africanus	South Africa	3.1	435		
Sts 5	Australopithecus africanus	South Africa	2.5	485	27,850	
Sts 19/58	Australopithecus africanus	South Africa	2.5	436		
Sts 60	Australopithecus africanus	South Africa	2.5	400		
Sts 71	Australopithecus africanus	South Africa	2.5	428	26,638	
Stw 505	Australopithecus africanus	South Africa	2.6	560		
Taung	Australopithecus africanus	South Africa	2.6	440		juvenile
Type 2	Australopithecus africanus		2.5	457		
Bouri (Bou-VP-12/130)	Australopithecus garhi	Ethiopia	2.5	450		
KNM-ER 1805	Homo habilis	Kenya	1.85	582		
KNM-ER 1813	Homo habilis	Kenya	1.88	509	34,883	
OH 7	Homo habilis	Tanzania	1.8	687		
OH 13	Homo habilis	Tanzania	1.5	650		
OH 16	Homo habilis	Tanzania	1.7	638		
OH 24	Homo habilis	Tanzania	1.8	590	30,286	
KNM-ER 3732	Homo ergaster	Kenya	1.88	750		
KNM-ER 3733	Homo ergaster	Kenya	1.78	848	59,200	
KNM-ER 3883	Homo ergaster	Kenya	1.57	804	57,458	
KNM-ER 1470	Homo rudolfensis	Kenya	1.88	752	45,597	
KNM-ER 1590	Homo rudolfensis	Kenya	1.85	825		

(continued)

Specimen	Putative taxon	Location	Age (Ma)	Cranial capacity (cc)	Body mass (g)ª	Developmental age ^b	Sources
Dmanisi D2280	Homo georgicus	Republic of	1.7	650			
Dmanisi D2282	Homo georgicus	Georgia Republic of Georgia	1.7	780			
Dmanisi D2700	Homo georgicus	Republic of Georgia	1.7	600			13
Buia (UA 31)	Homo erectus	Eritrea	0.78 - 1.0	750-800			13
Daka (Bou-VP-2/66)	Homo erectus	Ethiopia	1.0	995			
Hexian	Homo erectus	China	0.412	1025			
KNM-ER 42700 (Illeret)	Homo erectus	Kenva	1.55	691			14
KNM-WT 15000	Homo erectus	Kenya	1.5	900	59,939		
(Nariokotome Boy)							
Lantian (Gongwang 1)	Homo erectus	China	0.7	780			
Nanjing (Hulu Cave) 1	Homo erectus	China	0.580-0.620	876			15
Narmada	Homo erectus	India	0.236	1260			
Ngawi	Homo erectus	Java		870		immature	
OH 12	Homo erectus	Tanzania	0.78 - 1.2	727			date: 13
OH 9	Homo erectus	Tanzania	1.4	1067			date: 13
Salé	Homo erectus	Moroco	0.24	880			
Sambungmacan 1	Homo erectus	Java	0.8	1035			
Sambungmacan 3	Homo erectus	Java	0.4	917			
Sambungmacan 4	Homo erectus	Java	0.8	1006			
Sangiran 2	Homo erectus	Java	1.5	813			date: 13
Sangiran 3	Homo erectus	Java	1.0	950			
Sangiran 4	Homo erectus	Java	1.6	908			date: 13
Sangiran 10	Homo erectus	Java	1.2	855			date: 13
Sangiran 12	Homo erectus	Java	1.1	1059			date: 13
Sangiran 17	Homo erectus	Java	1.3	1004	76,062		date: 13
Sangiran IX	Homo erectus	Java	$1 \cdot 1 - 1 \cdot 4$	845	.A., 100 * (A., 2006)		13
Trinil 2	Homo erectus	Java	0.9	940			

Yunxian (1 and 2)	Homo erectus	China	0.4	1200			
Zhoukoudian (Z 11)	Homo erectus	China	0.42	1015	51,796		date: 13
Zhoukoudian I, L (Z 10)	Homo erectus	China	0.42	1225			date: 13
Zhoukoudian III, E (Z 2)	Homo erectus	China	0.58	915			date: 13
Zhoukoudian III, L (Z 12)	Homo erectus	China	0.42	1030	65,649		date: 13
Zhoukoudian V	Homo erectus	China	0.3	1140			13
Atapuerca (Sima de los Huesos) 4	Homo antecessor	Spain	0.530-0.600	1390			date: 16
Atapuerca (Sima de los Huesos) 5	Homo antecessor	Spain	0.530-0.600	1125			date: 16
Atapuerca (Sima de los Huesos) 6	Homo antecessor	Spain	0.530-0.600	1140			date: 16
Ngandong (Solo IX)	Homo soloensis	Java	0.143-0.546	1135			date: 20
Ngandong 1 (Solo I)	Homo soloensis	Java	0.143-0.546	1172			date: 20
Ngandong 6 (Solo V)	Homo soloensis	Java	0.143-0.546	1251			date: 20
Ngandong 7 (Solo VI)	Homo soloensis	Java	0.143-0.546	1013			date: 20
Ngandong 13 (Solo X)	Homo soloensis	Java	0.143 - 0.546	1231			date: 20
Ngandong 14 (Solo XI)	Homo soloensis	Java	0.143 - 0.546	1090			date: 20
Arago 21	Homo heidelbergensis	France	0.4	1166			
Biache	Homo heidelbergensis	France	0.160-0.190	1200			date: 12
Bodo	Homo heidelbergensis	Ethiopia	0.6	1250	117,236		
Ceprano	Homo heidelbergensis	Italy	0-8	1165			
Dali 1	Homo heidelbergensis	China	0.209	1120			taxon: 13
Ehringsdorf	Homo heidelbergensis	Germany	0.23	1450			
Jinniushan	Homo heidelbergensis	China	0.28	1390			taxon: 13
Kabwe (Broken Hill)	Homo heidelbergensis	Zambia	0.18	1325	118,890		
Le Lazaret	Homo heidelbergensis	France	0.13	1250		child	
Ndutu	Homo heidelbergensis	Tanzania	0.4	1100			12
Petralona	Homo heidelbergensis	Greece	0.21	1230			

Specimen	Putative taxon	Location	Age (Ma)	Cranial capacity (cc)	Body mass (g)ª	Developmental age ^b	Sources ^e
Reilingen	Homo heidelbergensis	Germany	0.2	1430			
Saldanha (Elandsfontein)	Homo heidelbergensis	South Africa	0.5	1225			
Salé	Homo heidelbergensis	Morocco	0.4	880			12
Steinheim	Homo heidelbergensis	Germany	0.225	1200	60,513		
Swanscombe	Homo heidelbergensis	England	0.25	1325	,		
Amud 1	Homo sapiens neanderthalensis	Israel	0.041	1740	84,481		12
Dederiyeh 1	Homo sapiens neanderthalensis	Syria	0.05	1096		infant	12
Dederiyeh 2	Homo sapiens neanderthalensis	Syria	0.05	1089		infant	12
Engis 2	Homo sapiens neanderthalensis	Belgium	0.06	1362		child	
Feldhofer	Homo sapiens neanderthalensis	Germany	0.040?	1525			date: 12
Gánovce	Homo sapiens neanderthalensis	Slovakia	0.09	1320			
Gibraltar (Devil's Tower)	Homo sapiens neanderthalensis	Gibraltar	0.05	1400		child	
Gibraltar (Forbe's Quarry)	Homo sapiens neanderthalensis	Gibraltar	0.05	1200	93,432		
Jebel Irhoud 1	Homo sapiens neanderthalensis	Morocco	0.1	1305	80,481		
Jebel Irhoud 2	Homo sapiens neanderthalensis	Morocco	0.1	1400			
Krapina 3 (Cranium C)	Homo sapiens neanderthalensis	Croatia	0.13	1255			
Krapina 6 (Cranium E)	Homo sapiens neanderthalensis	Croatia	0.13	1205			
Krapina B	Homo sapiens neanderthalensis	Croatia	0.13	1450			
La Chapelle aux Saints	Homo sapiens neanderthalensis	France	0.05	1625	100,237		
La Ferrassie	Homo sapiens neanderthalensis	France	0.060-0.075	1640	99,507		
La Quina 18	Homo sapiens neanderthalensis	France	0.06	1200		child	
La Quina 5	Homo sapiens neanderthalensis	France	0.065	1172			
Le Moustier	Homo sapiens neanderthalensis	France	0.041	1565	81,190		
Monte Circeo (Guattari 1)	Homo sapiens neanderthalensis	Italy	0.052	1360			
Neanderthal	Homo sapiens neanderthalensis	Germany	0.04	1525			

Pech de L'Azé	Homo sapiens neanderthalensis	France	>0.103	1150		juveline	12
Roc de Marsal	Homo sapiens neanderthalensis	France	>0.050	1260		infant	12
Saccopastore 1	Homo sapiens neanderthalensis	Italy	0.125	1245	66,573		
Saccopastore 2	Homo sapiens neanderthalensis	Italy	0.125	1300			
Shanidar 1	Homo sapiens neanderthalensis	Iraq	0.06	1600			
Shanidar 5	Homo sapiens neanderthalensis	Iraq	0.06	1550			
Skhul 1	Homo sapiens neanderthalensis	Israel	0.1	1450			
Skhul 4	Homo sapiens neanderthalensis	Israel	0.1	1554			
Skhul 5	Homo sapiens neanderthalensis	Israel	0.1	1520	70,166		
Skhul 9	Homo sapiens neanderthalensis	Israel	0.1	1590			
Spy I	Homo sapiens neanderthalensis	Belgium	0.068	1305			
Spy II	Homo sapiens neanderthalensis	Belgium	0.068	1553			
Tabun 1	Homo sapiens neanderthalensis	Israel	0.070-0.080	1271			date: 12
Teshik–Tash	Homo sapiens neanderthalensis	Uzbekistan	0.07	1525		child	
Herto 1/16	Homo sapiens idaltu	Ethiopia	0.16	1450			
Abri Pataud 1	Homo sapiens sapiens	France	0.022	1380			date: 12
Arene Candide 1	Homo sapiens sapiens	France	0.023	1414			date: 12; cranial
							capacity: 17
Arene Candide 2	Homo sapiens sapiens	France	0.023	1424			date: 12; cranial
							capacity: 17
Arene Candide 4	Homo sapiens sapiens	France	0.023	1520			date: 12; cranial
							capacity: 17
Arene Candide 5	Homo sapiens sapiens	France	0.023	1661			date: 12; cranial
Border Cave	Homo sations sations	South Africa	0.07	1510			capacity: 17
Brno I	Homo sapiens sapiens	Czech Republic	0.026	1600			
Brno II	Homo sabiens sabiens	Czech Republic	0.026	1500			
Brno III	Homo sabiens sabiens	Czech Republic	0.026	1304	79 551		
Bruniquel 2	Homo sapiens sapiens	France	0.020	1555	77,001		
Brunquel 2	110mo supiens supiens	France		1555			

Specimen	Putative taxon	Location	Age (Ma)	Cranial capacity (cc)	Body mass (G)ª	Developmental age ^b	Sources
Cap Blanc 1	Homo sapiens sapiens	France		1434			
Chancelade	Homo sapiens sapiens	France	0.012	1530			date: 12
Combe Capelle	Homo sapiens sapiens	France	0.028	1570			
Coobol Creek	Homo sapiens sapiens	Australia	0.012	1444			12
Cro-Magnon 1	Homo sapiens sapiens	France	0.03	1730			
Cro-Magnon 3	Homo sapiens sapiens	France	0.03	1590	59,407		
Dolni Vestonice 3	Homo sapiens sapiens	Czech Republic	0.0275	1285			
Dolni Vestonice 14	Homo sapiens sapiens	Czech Republic	0.0275	1538			
Dolni Vestonice 18	Homo sapiens sapiens	Czech Republic	0.0275	1481			
Dolni Vestonice 20	Homo sapiens sapiens	Czech Republic	0.0275	1547			
Dolni Vestonice 21	Homo sapiens sapiens	Czech Republic	0.0275	1378			
Grotte des Infants	Homo sapiens sapiens	Italy/France	0.028	1775			date: 17
(Grimaldi) 4							
Grotte des Infants	Homo sapiens sapiens	Italy/France	0.028	1375	40,405		date: 17
(Grimaldi) 5							
Grotte des Infants	Homo sapiens sapiens	Italy/France	0.028	1580			date: 17
(Grimaldi) 6							
Keilor	Homo sapiens sapiens	Australia	0.012	1497			12
KNM-ES 11693 (Eliye	Homo sapiens sapiens	Kenya	0.20-0.30	>1300			18
Springs)							
Kostenki 14	Homo sapiens sapiens	Russia		1222			
Kostenki 2	Homo sapiens sapiens	Russia	0.02	1605			
Laetoli 18	Homo sapiens sapiens	Tanzania	0.12	1367			taxon: 12
Liujiang	Homo sapiens sapiens	China	0.04	1480			
Minatogawa 1	Homo sapiens sapiens	Japan	0.018	1390			
Minatogawa 2	Homo sapiens sapiens	Japan	0.018	1170			
Minatogawa 4	Homo sapiens sapiens	Japan	0.018	1090			

Mladeč 1	Homo sapiens sapiens	Czech Republic	0.03	1540			
Mladeč 2	Homo sapiens sapiens	Czech Republic	0.03	1390			
Mladeč 5	Homo sapiens sapiens	Czech Republic	0.03	1650			
Nazlet Khater 2	Homo sapiens sapiens	Egypt	0.037	1420			
Obercassel 1	Homo sapiens sapiens	Germany	0.012	1500			date: 12
Obercassel 2	Homo sapiens sapiens	Germany	0.012	1370			date: 12
Omo 2 (Kibbish)	Homo sapiens sapiens	Ethiopia	0.12	1435			
Pavlov 1	Homo sapiens sapiens	Czech Republic	0.026	1472			
Predmosti 3	Homo sapiens sapiens	Czech Republic	0.026	1580	75,313		
Predmosti 4	Homo sapiens sapiens	Czech Republic	0.026	1250			
Predmosti 9	Homo sapiens sapiens	Czech Republic	0.026	1555			
Predmosti 10	Homo sapiens sapiens	Czech Republic	0.026	1452			
Qafzeh 6	Homo sapiens sapiens	Israel	0.09	1568			
Qafzeh 9	Homo sapiens sapiens	Israel	0.09	1531	64,625		
Qafzeh 11	Homo sapiens sapiens	Israel	0.09	1280		adolescent	12
San Teodoro 1	Homo sapiens sapiens	Italy	0.011	1565			date: 17
San Teodoro 2	Homo sapiens sapiens	Italy	0.011	1569			date: 17
San Teodoro 3	Homo sapiens sapiens	Italy	0.011	1560			date: 17
San Teodoro 5	Homo sapiens sapiens	Italy	0.011	1484			date: 17
San Teodoro 7	Homo sapiens sapiens	Italy	0.012	1500			17
Singa 1	Homo sapiens sapiens	Sudan	0.133	1550			
St. Germain-la-Rivie	Homo sapiens sapiens	France	0.015	1354			date: 17
Sungir 1	Homo sapiens sapiens	Russia	0.024	1464			
Sungir 2	Homo sapiens sapiens	Russia	0.024	1267			
Sungir 3	Homo sapiens sapiens	Russia	0.024	1361			
Sungir 5	Homo sapiens sapiens	Russia	0.024	1453			
Veyrier 1	Homo sapiens sapiens	France	0.01	1430			date: 17
Wadjak 1	Homo sapiens sapiens	Java	0.015	1539			17
Wadjak 2	Homo sapiens sapiens	Java	0.015	1650			17

(continued)

Specimen	Putative taxon	Location	Age (Ma)	Cranial capacity (cc)	Body mass (g) ª	Developmental age ^b	Sources
Willandra Lakes	Homo sapiens sapiens	Australia	0.018-0.012	1540			12
Yinkou (Jinniushan)	Homo sapiens sapiens	China	0.13	1390			
Zhoukoudian (Upper Cave) 1	Homo sapiens sapiens	China	0.015	1500	83,635		
Zhoukoudian (Upper Cave) 2	Homo sapiens sapiens	China	0.015	1380	43,241		
Zhoukoudian (Upper Cave) 3	Homo sapiens sapiens	China	0.015	1290	71,312		
LB1	Homo floresiensis	Flores, Indonesia	0.018	417			19

^aFrom Kappelman (1996); estimates derived from orbit size.

^bSpecimens are known or believed to be adult unless otherwise noted.

^cData from Holloway et al. (2004) except as noted.

Codes for additional sources:

1. Radinsky (1977); 2. Gingerich (1979); 3. Gingerich and Martin (1981); 4. Begun and Kordos (2004); 5. Simons et al. (2007); 6. Bush et al. (2004); 7. Walker et al. (1983); 8. Bernor et al. (2002); 9. Guy et al. (2005); 10. Suwa et al. (2009); 11. White et al. (2009); 12. Lieberman (2011); 13. Antón (2003); 14. Spoor et al. (2007); 15. Wu et al. (2011); 16. Bischoff et al. (2007); 17. De Miguel and Henneberg (2001); 18. Bräuer (1989); 19. Falk et al. (2005); 20. Indriati et al. (2011). The EQ of one of the earliest fossil catarrhines, *Aegyptopithecus*, dating to approximately 30 Ma, is smaller than any modern primate (and in fact is relatively small compared with modern mammals as well; Figure 8.1a, Tables 8.1 and 8.2). Estimates of brain size range from 21.2 cc (CGM 40237) and 14.6 cc (CGM 85785), with body sizes of 6.4 kg and 2.5 kg respectively (Begun and Kordos 2004; Simons et al. 2007).

All living anthropoids have relative brain sizes larger than the fossil primates dating to the apparent platyrrhine/catarrhine split, approximately 35 Ma (Figure 8.1a, Table 8.1). Endocranial reconstructions suggest that brain organization in *Aegyptopithecus* had begun to approximate modern anthropoids, with reduced olfactory bulbs (suggesting a reduced sense of smell), an elaborated visual cortex, and the development of a central sulcus separating primary somatic sensory and motor cortex (Radinsky 1974), thus differing from most fossil and modern prosimians. Although it was anthropoid-like in these ways, *Aegyptopithecus* appears not to have had as large a frontal lobe as is seen in modern anthropoids (Radinsky 1974).

Fossils evidence of hominoid brain evolution is relatively sparse, but we can sketch a rough outline. A *Proconsul* specimen (KNM-RU 7290) dating to 18 Ma has a brain size of approximately 168 cc (Walker et al. 1983). This is much larger in absolute terms than any prior fossil primate. With an estimated body size of approximately 16 kg, it sits comfortably within the range of modern primate brain sizes for its body size (Figure 8.1a, Tables 8.1 and 8.2). Using *Aegyptopithecus* as a gauge of the brain size of early catarrhines, *Proconsul* represents about a nine-fold increase in absolute brain size over approximately 14 million years.

Proconsul does not appear to have had an anatomy suggesting suspensory locomotion, unlike all modern hominoids. Given that molecular evidence suggests that the last common ancestor of modern hominoids lived approximately 12 Ma (Sarich 1987; see Disotell, this volume Chapter 15), *Proconsul* may not have been directly ancestral to modern hominoids. The earliest fossil primate brains from relatively large-bodied suspensory apes are two specimens of Rudapithecus (RUD 77 and RUD 200) (Begun, this volume Chapter 21), both of which date to close to 10 Ma. Their estimated brain sizes are just over 300 cc, placing them at the low end of modern great apes with respect to absolute size (Begun and Kordos 2004). However, because their estimated body sizes are relatively small (21 kg for RUD 200; 25 kg for RUD 77) they have relatively high EQs (higher than any living non-human ape; Figure 8.1a, Tables 8.1 and 8.2).

Another Late Miocene suspensory ape, *Oreopithecus*, had a brain size of approximately 112 cc and a body size of approximately 15 kg (Begun and Kordos 2004), giving it an absolute brain size similar to modern hylobatids (gibbons and siamangs) even though it weighed about twice as much. This translates to a low EQ for modern primates (close to that of gorillas), though still within the modern range (Figure 8.1a, Tables 8.1 and 8.2). *Oreopithecus* is generally thought to be an early great ape (Begun and Kordos 2004).

Fossil evidence of primate evolution thus suggests numerous independent increases in both relative and absolute brain size. Hominoid brain evolution appears most pronounced with respect to absolute size, rather than relative brain size. Because both body size and brain size increased in hominoid lineages, modern great apes do not have larger relative brain sizes than is typical for monkeys. Sulcal patterns of *Rudapithecus* suggest that relatively little neural organizational change occurred, with the exception of the frontal regions.

Superfamily	Genus species	Common name	Cranial capacity (cc) ^a	Body mass (g)	Source
Hominoidea	Homo sapiens	human	1156–1775	66,242	1
Hominoidea	Pan troglodytes	chimpanzee	282-454	53,700	2
Hominoidea	Pan paniscus	bonobo	275-381		2
Hominoidea	Gorilla	gorilla	350-752	120,500	2
Hominoidea	Pongo	orangutan	276-502	62,750	2
Hominoidea	Hylobates	gibbon	70-152	5732	2
Cercopithecoidea	Papio papio	baboon	155.44	9885	3
Cercopithecoidea	Macaca nemestrema	pigtail macaque	108.87	4888	4
Cercopithecoidea	Macaca cynomolgus.	crab-eating macaque	61.85	1504	4
Cercopithecoidea	Presbytis entellus	langur	119.40	21,319	5
Cercopithecoidea	Macaca mulatta	rhesus monkey	87.90	7800	6
Cercopithecoidea	Cercocebus albigena	mangabey	97.60	7900	6
Cercopithecoidea	Papio anubis	olive baboon	190.96	25,000	6
Cercopithecoidea	Cercopithecus mitis	blue monkey	70.56	6300	6
Cercopithecoidea	Cercopithecus ascanius	red-tailed monkey	63.51	3400	6
Cercopithecoidea	Cercopithecus talapoin	guenon	37.78	1200	6
Cercopithecoidea	Erythrocebus patas	patas monkey	103.17	7800	6
Cercopithecoidea	Pygathrix nemaeus	red-shanked douc langur	72.53	7500	6
Cercopithecoidea	Nasalis larvatus	proboscis monkey	92.80	14,000	6
Cercopithecoidea	Colobus badius	red colobus	73.82	7000	6
Ceboidea	Callithrix jacchus	common marmoset	7.24	280	6
Ceboidea	Cebuella pygmaea	pygmy marmoset	4.30	140	6
Ceboidea	Saguinus oedipus	cotton-top tamarin	9.54	380	6
Ceboidea	Saguinus	tamarin	9.57	340	6
Ceboidea	Callimico goeldii	Goeldi's monkey	10.51	480	6
Ceboidea	Aotus trivirgatus	Northern/three-striped night monkey	16.20	830	6
Ceboidea	Callicebus moloch	red-bellied/dusky titi	17.94	900	6
Ceboidea	Pithecia monacha	monk saki	32.87	1500	6
Ceboidea	Alouatta sp.	howler monkey	49.01	6400	6

 Table 8.2
 Estimated cranial capacities and body weights for extant primate species.

Ceboidea	Ateles geoffroyi	spider monkey	101.03	8000	6
Ceboidea	Lagothrix lagotricha	woolly monkey	95.50	5200	6
Ceboidea	Cebus sp.	capuchin monkey	66.94	3100	6
Ceboidea	Saimiri sciureus	squirrel monkey	22.57	660	6
Prosimii	Cheirogaleus major	greater dwarf lemur	6.37	450	6
Prosimii	Cheirogaleus medius	fat-tailed dwarf lemur	2.96	177	6
Prosimii	Microcebus murinus	gray mouse lemur	1.68	54	6
Prosimii	Lepilemur ruficaudatus	red-tailed sportive lemur	7.18	915	6
Prosimii	Lemur fulvus	brown lemur	22.11	1400	6
Prosimii	Varecia variegata	ruffed lemur	29.71	3000	6
Prosimii	Avahi I. laniger	Eastern woolly lemur	9.80	1285	6
Prosimii	Avahi l. occidentalis	Western woolly lemur	9.12	860	6
Prosimii	Propithecus verreauxi	white sifaka	25.19	3480	6
Prosimii	Indri Indri	idri	36.29	6250	6
Prosimii	Daubentonia madagasc ariensis	aye aye	42.61	2800	6
Prosimii	Loris tardigradus	red slender loris	6.27	322	6
Prosimii	Nycticebus coucang	slow loris	11.76	800	6
Prosimii	Perodicticus potto	potto	13.21	1150	6
Prosimii	Galago crassicaudatus	greater galago	9.67	850	6
Prosimii	Galago demidoff	Demidoff's dwarf galago	3.20	81	6
Prosimii	Galago senegalensis	lesser bush baby	4.51	186	6
Prosimii	Tarsius sp.	tarsier	3.39	125	6

^a Range if given. ^b Sources: 1. Parenti (1973); 2. Tuttle (1986); 3. Riese and Riese (1952); 4. Count (1947); 5. Jerison (1973); 6. Stephan et al. (1981).

HOMININ BRAIN EVOLUTION

The most obvious evolutionary change in hominin brains has been in overall size. Figure 8.1b illustrates the cranial capacities plotted against time for most of the specimens discussed in this chapter (see Table 8.2 for sources). It is evident that the trend has been a roughly linear function of log time from the earliest anthropoids to the present. It also illustrates that the earliest hominins appear to have had brains approximately the size of modern apes. The cranial capacities of modern chimpanzees (Pan troglodytes) range from approximately 280 to approximately 450 cc, bonobos (Pan paniscus) from approximately 275 to approximately 380 cc, and gorillas (Gorilla gorilla) from approximately 350 to approximately 750 cc (Tuttle 1986). Rudapithecus, as discussed above, already had brain sizes in the lower end of this range as far back as approximately 10 Ma. Sahelanthropus tchadensis, which has been dating to approximately 6.5 Ma, had a cranial capacity of approximately 365 cc. Though it has been suggested to be an early hominin on morphological grounds (Guy et al. 2005), molecular phylogenetic studies suggest the last common ancestor of modern chimpanzees, gorillas and humans may have lived as late as 5 Ma (Sarich 1987; see Disotell, this volume, Chapter 15). If this is correct, Sahelanthropus may simply be a large-bodied Late Miocene ape. In either case, the earliest hominins likely had brain sizes ranging in the low end of modern large-bodied African apes.

Ardipithecus ramidus, with a cranial capacity of approximately 300 cc and dating to approximately 4.4 Ma, appears to be an early hominin (Suwa et al. 2009; Simpson, this volume, Chapter 22). Australopithecus afarensis, an early gracile bipedal form dating to between approximately 3.7 and 3.2 Ma, had cranial capacities ranging from 387 cc (AL 288-1, Lucy's) to approximately 550 cc (AL 444-2), thus overlapping and extending beyond the upper range of modern chimpanzee values (Holloway et al. 2004) (Hammond and Ward, this volume). Furthermore, body size estimates for these species suggest they were somewhat smaller than modern chimpanzees (McHenry 1992), suggesting EQs somewhat larger than modern chimpanzees (>3, compared with less than 2 for chimpanzees; see Figure 8.1a). As mentioned above, however, the behavioral significance of EQ vs. absolute brain size is unclear (see below). There is no obvious archeological evidence indicating any behavioral elaboration beyond modern great apes. Undisputed evidence of stone tool manufacturing, for example, does not occur until approximately 2.6 Ma (Semaw et al. 2003).

Specimens of *Australopithecus africanus*, dating between 3.1 and 2.5 Ma, have estimated cranial capacities of 400 cc (Sts 60) to 560 cc (Stw 505). One *Australopithecus garhi* specimen, dating to 2.5 Ma, has an estimated cranial capacity of 450 cc (Asfaw et al. 1999). These later gracile *Australopithecines* thus also overlap with, but extend significantly beyond, the range of modern chimpanzee cranial capacities. Body size estimates again suggest that they were smaller than modern chimpanzees, and hence would have had higher EQs than modern apes (though again, the behavioral significance is unclear).

At this point, there is a divergence of at least two different lineages in hominin evolution. One resulted in the robust australopithecines, while the other resulted in the genus *Homo*. Although brain size increase was most dramatic in *Homo*, it is curious that the robust lineage apparently also experienced a moderate increase. The presumed ancestor of later robusts (at least in East Africa), *Paranthropus aethiopicus*, had a cranial capacity of 410 cc (Holloway et al. 2004; see Chapter 3 by Strait, and Chapter 23 by Wood and Schroer, this volume). The later robust form in East Africa, *Paranthropus boisei*, had cranial capacities ranging from 475 to 545 cc (specimens date from 1.85-1.4 Ma), and appear to have increased over time (Elton et al. 2001). The later South African robust form, *Paranthropus robustus*, had cranial capacities ranging from 450 to 530 cc (specimens from 1.5 Ma). Thus, an independent trend of increasing cranial capacity is suggested in the robust lineage. It is not known whether this was because of increased competition with contemporary *Homo* species, use of stone tools, increased group sizes, or perhaps interbreeding with larger-brained *Homo*.

The *Homo* lineage shows a more dramatic increase in cranial capacity, beginning sometime between 3 and 2 Ma (Figure 8.1b). This is not surprising, since largerbrained fossil hominins are invariably placed in the *Homo* genus. Only one *Homo habilis* specimen, KNM-ER 1813 (at 509 cc), has a cranial capacity in the range of contemporary robust australopithecines. All other specimens range from 582 cc (KNM-ER 1805) to 687 cc (OH 7). These specimens date between 1.88 and 1.50 Ma. A second putative early *Homo* taxon, *H. rudolfensis*, dating between 1.88 and 1.85 Ma, has cranial capacities ranging from 752 cc (KNM-ER 1470) to 825 cc (KNM-ER 1590). *Homo ergaster* specimens (which curiously overlap with both H. *habilis* and *H. rudolfensis*, being found from 1.88–1.57 Ma) range from 750 cc (KNM-ER 3732) to 848 cc (KNM-ER 3733). Regardless of whether these taxonomic groupings are truly valid, a significant number of specimens demonstrate cranial capacities outside the range for modern apes of similar body sizes.

From early *Homo* on, a reasonably steady increase is evident in cranial capacity up to Neanderthals, ranging from 1172 to 1740 cc (La Quina 5 and Amud, respectively), and anatomically modern *Homo sapiens*, ranging from 1090 to 1775 cc (Minatogawa 4 and Grotte des Infants 4, respectively). Ignoring the inherently problematic question of individual specimen species assignment, the overall trend shows no obvious punctuated, step-like changes (Figure 8.1b). A smooth transition over time is also seen for EQs of individual specimens (where body size is estimated from eye orbit size; Kappelman 1996). If taxonomic placement is valid, it is possible to see punctuated changes, but too much depends on the correct species identification for individual fossils. Given the range of cranial capacities at any given time point is approximately the same as seen in extant *Homo sapiens* (Figure 8.1b), the most likely interpretation is a reasonably constant increase.

These increases in hominin brain size are not matched by increases in the size of the brains of monkeys over the same period (Elton et al. 2001), suggesting that there was something special about hominin niches, that either specifically selected for increasing brain size, or allowed for brain sizes to increase because of an increase in the ability to extract resources from the environment (thereby providing the metabolic resources necessary to support such large brains), or both.

REORGANIZATION

Although overall brain size is the easiest neuroanatomical feature to measure in fossils (via cranial capacity), brains are not simple, single functional units. As discussed above, comparative anatomical studies show that different parts of our brain evolved to

different extents. The timing of these changes is the matter of some debate. One possibility, long championed by Ralph Holloway, is that important changes in the internal organization of the brain (which he calls "reorganization") occurred before brain size increased. He believes that it was specifically these early changes that spurred later brain evolution. Holloway points to the relatively small size of the primary visual cortex (V1) in modern humans (discussed above; Holloway 1992). Though this could have been the result of V1 lagging behind increases in other areas, Holloway believes that several fossil endocasts indicate the boundary of V1 is in a more posterior (human-like) position in australopithecines, as judged from likely positions of the lunate sulcus, which marks the boundary of V1 in hominoids (Holloway 2008). However, another leading paleoneurologist, Dean Falk, favors a model in which reorganization occurred simply through the differential enlargement of some areas over others (Falk 1980, 2007). Holloway et al. (2003) reported on two chimpanzees who have human-like lunate positions, which they point out show it is theoretically possible for early australopithecines to have evolved in the human direction (before any dramatic increase in overall brain size). However, this also demonstrates that the change can have no behavioral implications, thereby undermining the significance of such a change. Furthermore, if the hypothesized change occurred in australopithecines because more elaboration was needed in anterior regions, this implicitly suggests a decrease in visual processing ability, since neural tissue devoted to visual processing (or at least V1) would have decreased (at least initially) under Holloway's model. This seems unlikely, but cannot be ruled out at present.

Suggestive evidence of elaboration in Broca's area, which in modern humans plays a key role in language production, appeared in early *Homo*. This has been inferred from the development of Broca's Cap, which is a raised area (bump) overlaying Broca's area on endocasts. Qualitative studies suggest that Broca's Cap is larger on the left than the right even in early *Homo* species (Holloway 1983). Falk (1983) also argues that a *Homo rudolfensis* specimen (KNM-ER 1470, 1.8Ma) shows modernhuman-like sulcal impressions where Broca's area would be.

Another feature that appears during hominid evolution is asymmetrical protrusions known as petalias. Modern humans typically display a left occipital/right frontal petalial pattern. Other apes sometimes display petalias, but the majority do not show the combination very commonly seen in humans (Holloway and de la Coste-Lareymondie 1982). Further, this pattern is common in *Homo erectus* and Neanderthals, and is suggested in australopithecines (Holloway and de la Coste-Lareymondie 1982). Exactly what this means behaviorally is unfortunately not known. Language is typically lateralized to the left hemisphere, but why this would lead to left occipital but not left frontal protrusion is not obvious. The right frontal plays a key role in prosody (the patterns of stress and intonation in a language), but the left frontal contains the language-functional Broca's area for most people. In addition, the typical modern human pattern is found in some individual apes. All of this confounds a clear functional explanation for left occipital/right frontal petalias.

Studies of *Homo erectus*, Neanderthal, and *Homo sapiens* endocasts also suggest that parietal regions have expanded to a greater extent than other regions (Bruner 2004). Parietal regions are known to mediate a variety of spatial analysis tasks, many of which appear to be important for motor sequences involved in manipulation of the hands, suggesting a role for tool-making (Bruner 2004).

BRAIN AND BEHAVIOR

The behavioral implications of these evolutionary changes hinge on the extent to which neural volume truly predicts ability. First, note that increasing neural resources come at an evolutionary cost, which must be paid every generation. In addition to very high metabolic rate, larger brains take longer to mature (Harvey and Clutton-Brock 1985), so their possessors have fewer offspring per unit time. Larger brains are also problematic for childbirth in bipedal primates, since this form of locomotion selects for narrow hips (minimizing the lateral displacement of the hip joint from the center of gravity; Lovejoy 1988; see Richmond and Hatala, this volume Chapter 10). Thus, increasing brain size must have substantial counterbalancing benefits wherever it occurs (Smith 1990).

It is generally assumed that the benefits relate to some sort of behavioral advantage, because of the brain's central function. Darwin himself suggested: "As the various mental faculties gradually developed themselves the brain would almost certainly become larger. No one, I presume, doubts that the large proportion which the size of man's brain bears to his body, compared to the same proportion in the gorilla or orang, is closely connected with his higher mental powers." (Darwin 1871:145.) But exactly which "higher mental powers" explain increasing brain size in hominins? Clear candidates for this are behaviors unique or highly elaborated in humans: language, manufacturing and use of tools, extraordinary levels of social complexity, and high emphasis on learned behaviors. Intelligence is also frequently assumed to be relevant, though defining "intelligence" has proved to be contentious (both within and between species).

Comparative studies in primates have demonstrated significant correlations among various components of brain and social complexity, tool use, and behavioral innovation (Reader and Laland 2002; Dunbar 2003). Absolute brain size actually correlates more highly than EQ with general cognitive abilities (Deaner et al. 2007). Largerbrained primates appear to conceptually understand tasks, not just learn associations, and are therefore more behaviorally flexible (Gibson et al. 2001). The behavioral relevance of EQ is in fact unclear, even though it is commonly assumed to be centrally important. At the level of entire mammalian orders, average EQ does correlate strongly with average ethogram size (i.e., number of different behaviors displayed; Changizi 2003).

The general explanatory model for brain evolution is that selection for some adaptive behavioral characteristic(s) led to changes in brain anatomy. There are a number of assumptions here:

- 1. individual differences in the relevant behavioral abilities must have had reproductive consequences within each generation, on average;
- 2. there must be a genetic correlation (not just a phenotypic correlation) connecting brain structure size with behavioral ability; and
- 3. the genetic correlations must be due to genetic influences on brain anatomy causally influencing behavior, or vice-versa (Schoenemann 2006).

Each of these assumptions is at least partially testable, in principle. For a given hypothesis about brain evolution to be more than an idle guess, specific research on these questions is crucial. While it is impossible to demonstrate that a particular behavioral ability always had positive consequences for reproduction, it has at least been shown that fertility was positively associated with educational attainment in one community at one time (Bajema 1966), and negatively associated with overt schizophrenia (Laursen and Munk-Olsen 2010), for example. Most models of brain evolution simply assume that it would always be adaptive to be more intelligent.

Few studies have actually estimated *genetic* correlations between brain anatomy and behavior, with most focusing on general cognitive ability. There is a significant *phenotypic* correlation between IQ and brain size (meta-analysis suggesting r=approximately 0.40; Rushton and Ankney 2009). However, phenotypic correlations can result both from non-genetic influences as well as from a non-random distribution (through cross-assortative mating) of independent genetic influences on brain and behavior. Phenotypic correlations of this sort would not support an evolutionary model. Only three studies have effectively controlled for such effects, and their results suggest the actual genetic correlation is significantly weaker: somewhere between 0 and 0.2 (Schoenemann et al. 2000; Posthuma et al. 2002; Gignac et al. 2003; reviewed in Schoenemann 2006).

Furthermore, because enriched environments cause measurable increases in brain volumes in rats (Diamond 1988), some (presumably small?) portion of the association in humans could be due to similar effects. The actual evolutionarily-relevant genetic correlation between brain size and general cognitive ability is therefore likely smaller than 0.2, though probably not zero.

This might seem to be too low for selection on greater general cognitive ability to conceivably cause hominin brain size increases. However, an increase of approximately 1000 cc over an estimated approximately 125,000 generations translates to only approximately 0.8 cc/generation. This means the necessary brain-behavior genetic correlation can actually be very small (though not zero) for selection on the hypothesized behavior to cause this change (Schoenemann et al. 2000).

It is also likely that selection acted on other abilities besides those tapped by modern IQ tests. Some studies have reported associations between cognitive tasks and specific brain regions. Holloway et al. (1993) suggest that apparent sex differences in corpus callosum morphology (e.g., Smith 2005) might in turn be explained by sex differences in spatial (Halpern 1987) and/or social abilities. Variation in corpus callosum morphology may be associated with such abilities, though studies have not yet been published.

The ability to manipulate information in short-term memory to solve particular problems or goals (so-called "working memory") correlates with measures of brain size (Posthuma et al. 2003). Because prefrontal cortex is known to mediate such abilities, it may be that the association is even stronger for that region. The ability to focus on particular stimuli in the face of distractors, as indexed by the Stroop test (Stroop 1935), has been shown to be moderately correlated with the size of the prefrontal cortex (Schoenemann et al. 2000). The prefrontal has also been implicated in temporal and serial order information processing (Fuster 1985; Petersson et al. 2004).

Because language relies on a wide array of circuits located in the temporal, parietal and prefrontal lobes, as well as subcortical circuits involving basal ganglia and the cerebellum (Schoenemann 2009), it is likely that disproportionate increases in these areas are at least partly due to selection for language, though direct empirical studies connecting neuroanatomical variation and language ability in humans are lacking.

The disproportionate increases in cerebellar components in apes and humans outlined above may also have important behavioral implications, as the cerebellum has been implicated in a number of higher cognitive functions, including aspects of memory and learning, attention, visuo-spatial processing, modulating emotional responses, goal organization and planning, and even language (MacLeod et al. 2003; Baillieux et al. 2008). Conversely, the relatively small motor, premotor, primary visual, and olfactory bulb areas may well indicate no behavioral differences between apes and humans, since absolute size is more important than relative size for many behavioral dimensions. In absolute terms, premotor and V1 areas are actually larger in humans than in apes. The study of brain–behavior associations with respect to gross anatomy is in its infancy right now, however, and future studies will be needed to fully explore the possibilities.

INTERPRETING BRAIN EVOLUTION

In light of the evidence regarding functional implications of neuroanatomical differences, it is possible to outline likely behavioral implications of neuroanatomical evolution in apes and humans. First, changes in ape brains – particularly increased absolute brain size and elaboration of cerebellar areas with respect to body size – suggest a significant enhancement of general cognitive ability, behavioral flexibility, learning, and planning compared with monkeys. Further changes during human evolution suggest even greater enhancement of these same abilities in our lineage. Increases in brain areas relevant to language, particularly in temporal, parietal, and prefrontal areas, also suggest a key evolutionary role for communication, and by implication social interaction generally (Deacon 1997; Schoenemann 2009). Elaboration of prefrontal areas also suggests an important increase in planning and causal reasoning (Schoenemann 2006), both of which are central not only to technological innovation but also reasoning about social relationships.

NOTE

1 Brain size does not correlate with metabolic resources when statistically controlling for body size (McNab and Eisenberg 1989), but this also removes approximately 95 percent of the variation in brain size – exactly the variation the model is trying to explain.

REFERENCES

Aiello, Leslie C, and Peter Wheeler, 1995 The Expensive Tissue Hypothesis: The Brain and the Digestive System in Human and Primate Evolution. Current Anthropology 36(2):199–221.

Antón, Susan C., 2003 Natural History of *Homo erectus*. American Journal of Physical Anthropology Supplement 37:126–70.

Armstrong, Este, 1983 Relative Brain Size and Metabolism in Mammals. Science 220:1302–1304.

- Asfaw, Berhane, Tim White, Owen Lovejoy, Bruce Latimer, Scott Simpson, and Gen Suwa., 1999 Australopithecus garhi: A New Species of Early Hominid from Ethiopia. Science 284(5414):629–35.
- Atchley, W. R., 1984 The Effect of Selection on Brain and Body Size Association in Rats. Genetic Research 43:289–298.
- Baillieux, Hanne, Hyo Jung De Smet, Philippe F. Paquier, Peter P. De Deyn, and Peter Mariën, 2008 Cerebellar Neurocognition: Insights into the Bottom of the Brain. Clinical Neurology and Neurosurgery 110(8):763–73.
- Bajema, C. J., 1966 Relation of Fertility to Educational Attainment in a Kalamazoo Public School Population: A Follow-Up Study. Eugenics Quarterly 13(4):306–315.
- Begun, David R., and László Kordos, 2004 Cranial Evidence of the Evolution of Intelligence in Fossil Apes. *In* The Evolution of Thought: Evolutionary Origins of Great Ape Intelligence.
 A.E. Russon and D.R. Begun, eds. pp. 260–279. Cambridge: Cambridge University Press.
- Bernor, Raymond L. et al., 2002 Recent Advances in Multidisciplinary Research at Rudabánya, Late Miocene (MN9), Hungary: A Compendium. Palaeontographia Italica 89:3–36.
- Bischoff, James L., Ross W. Williams, Robert J. Rosenbauer, Arantza Aramburu, Juan Luis Arsuaga, Nuria García, and Gloria Cuenca-Bescós 2007 High-Resolution U-Series Dates from the Sima De Los Huesos Hominids Yields : Implications for the Evolution of the Early Neanderthal Lineage. Journal of Archaeological Science 34(5):763–770.
- Blinkov, Samuil M., and Il'ya I. Glezer, 1968 The Human Brain in Figures and Tables. B. Haigh, Transl. New York: Plenum Press.
- Bräuer, Günther, 1989 The ES–11693 Hominid from West Turkana and *Homo sapiens* Evolution in East Africa. *In* Hominidae. Proceedings of the 2nd International Congress of Human Paleontology, Turin, September 28–October 3, 1987. Giacomo Giacobini, ed. pp. 241–245. Milan: Jaca Book.
- Brodmann, K., 1909 Vergleichende Lokalisationslehre Der Grosshirnrinde in Ihren Prinzipien Dargestellt Auf Grund Des Zellenbaues. Leipzig: Johann Ambrosius Barth Verlag.
- Bruner, Emiliano, 2004 Geometric Morphometrics and Paleoneurology: Brain Shape Evolution in the Genus *Homo*. Journal of Human Evolution 47:279–303.
- Bush, Eliot C., Elwyn L. Simons, and John M. Allman, 2004 High-Resolution Computed Tomography Study of the Cranium of a Fossil Anthropoid Primate, *Parapithecus grangeri*: New Insights into the Evolutionary History of Primate Sensory Systems. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology 281A(1):1083–1087.
- Changizi, M. A., 2003 Relationship Between Number of Muscles, Behavioral Repertoire Size, and Encephalization in Mammals. Journal of Theoretical Biology 220(2):157–68.
- Changizi, M. A., and S. Shimojo, 2005 Parcellation and Area–Area Connectivity as a Function of Neocortex Size. Brain, Behavior and Evolution 66(2):88–98.
- Count, Earl W., 1947 Brain and Body Weight in Man: Their Antecedents in Growth and Evolution. Annals of the New York Academy of Sciences 46:993–1122.
- Darwin, Charles, 1871 The Descent of Man and Selection in Relation to Sex. London: John Murray.
- De Miguel, C., and M. Henneberg, 2001 Variation in Hominid Brain Size: How Much is Due to Method? Homo 52(1):3–58.
- Deacon, Terrence William, 1990 Fallacies of Progression in Theories of Brain-Size Evolution. International Journal of Primatology 11(3):193–236.
- Deacon, Terrence William, 1992 Brain–Language Coevolution. In The Evolution of Human Languages. J. A. Hawkins and M. Gell-Mann, eds. pp. 49–83. SFI Studies in the Sciences of Complexity. Redwood City, CA: Addison-Wesley.
- Deacon, Terrence William, 1997 The Symbolic Species : The Co-Evolution of Language and the Brain. New York: W.W. Norton.
- Deaner, R. O. et al., 2007 Overall Brain Size, and not Encephalization Quotient, Best Predicts Cognitive Ability Across Non-Human Primates. Brain, Behavior and Evolution 70(2):115–24.

- Diamond, Marian C., 1988 Enriching Heredity : The Impact of the Environment on the Anatomy of the Brain. New York: Free Press.
- Dunbar, R. I. M., 2003 The Social Brain: Mind, Language, and Society in Evolutionary Perspective. Annual Review of Anthropology 32:163–81.
- Elton, S., L. C. Bishop, and B. Wood, 2001 Comparative Context of Plio-Pleistocene Hominin Brain Evolution. Journal of Human Evolution 41(1):1–27.
- Falk, Dean, 1980 A Reanalysis of the South African Australopithecine Natural Endocasts. American Journal of Physical Anthropology 53:525–539.
- Falk, Dean, 1983 Cerebral Cortices of East African Early Hominids. Science 221:1072–1074.
- Falk, Dean, 2007 Evolution of the Primate Brain. *In* Handbook of Paleoanthropology. W. Henke and I. Tattersall, eds. pp. 1133–1162: Springer Berlin Heidelberg.
- Falk, Dean et al., 2005 The Brain of LB1, Homo floresiensis. Science 308(5719):242-5.
- Fleagle, John G., 1999 Primate Adaptation and Evolution, 2nd Edition. San Diego: Academic Press.
- Fox, James H., and Walter Wilczynski, 1986 Allometry of Major CNS Divisions: Towards a Reevaluation of Somatic Brain–Body Scaling. Brain, Behavior and Evolution 28:157–169.
- Fuster, J. M., 1985 The Prefrontal Cortex, Mediator of Cross-Temporal Contingencies. Human Neurobiology 4:169–179.
- Gibson, Kathleen R., Duane Rumbaugh, and Michael Beran, 2001 Bigger is Better: Primate Brain Size in Relationship to Cognition. in Evolutionary Anatomy of the Primate Cerebral Cortex. D. Falk and K. Gibson, eds. pp. 79–97. Cambridge: Cambridge University Press.
- Gignac, G., P. A. Vernon, and J. C. Wickett, 2003 Factors Influencing the Relationship Between Brain Size and Intelligence. in The Scientific Study of General Intelligence: Tribute to Arthur R. Jensen. H. Nyborg, ed. pp. 93–106. London: Elsevier.
- Gingerich, Philip D., 1979 Phylogeny of Middle Eocene Adapidae (Mammalia, Primates) in North America: *Smilodectes* and *Notharctus*. Journal of Paleontology 53(1):153–163.
- Gingerich, Philip D., and Robert D. Martin, 1981 Cranial Morphology and Adaptations in Eocene Adapidae. II. The Cambridge Skull of *Adapis parisiensis*. American Journal of Physical Anthropology 56(3):235–257.
- Guy, Franck et al., 2005 Morphological Affinities of the *Sahelanthropus tchadensis* (Late Miocene Hominid from Chad) Cranium. Proceedings of the National Academy of Sciences of the USA 102(52):18836–18841.
- Halpern, D. F., 1987 Sex Differences in Cognitive Abilities. Hillsdale, NJ: Erlbaum.
- Harvey, P. H., and T. H. Clutton-Brock, 1985 Life History Variation in Primates. Evolution 39:559–581.
- Hochstadt, J., H. Nakano, P. Lieberman, and J. Friedman, 2006 The Roles of Sequencing and Verbal Working Memory in Sentence Comprehension Deficits in Parkinson's Disease. Brain and Language 97(3):243–57.
- Hofman, Michel A., 1983 Energy Metabolism, Brain Size, and Longevity in Mammals. Quarterly Review of Biology 58:495–512.
- Hofman, Michel A., 1985 Size and Shape of the Cerebral Cortex in Mammals: I. The Cortical Surface. Brain, Behavior and Evolution 27:28–40.
- Holloway, Ralph L., 1983 Human Paleontological Evidence Relevant to Language Behavior. Human Neurobiology 2:105–114.
- Holloway, Ralph L., 1992 The Failure of the Gyrification Index (GI) to Account for Volumetric Reorganization in the Evolution of the Human Brain. Journal of Human Evolution 22:163–170.
- Holloway, Ralph L., 2008 The Human Brain Evolving: A Personal Retrospective. Annual Review of Anthropology 37:1–19.
- Holloway, Ralph L., and Marie Christine De La Coste-Lareymondie, 1982 Brain Endocast Asymmetry in Pongids and Hominids: Some Preliminary Findings on the Paleontology of Cerebral Dominance. American Journal of Physical Anthropology 58:101–110.

- Holloway, Ralph L., P. J. Anderson, R. Defendini, and C. Harper, 1993 Sexual Dimorphism of the Human Corpus Callosum from Three Independent Samples: Relative Size of the Corpus Callosum. American Journal of Physical Anthropology 92:481–498.
- Holloway, Ralph L., D. C. Broadfield, and M. S. Yuan, 2003 Morphology and Histology of Chimpanzee Primary Visual Striate Cortex Indicate that Brain Reorganization Predated Brain Expansion in Early Hominid Evolution. Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology 273(1):594–602.
- Holloway, Ralph L., Douglas C. Broadfield, and Michael S. Yuan, 2004 The Human Fossil Record, vol. 3. Brain Endocasts The Paleoneurological Evidence. Hoboken, NJ: John Wiley & Sons.
- Indriati, Etty et al., 2011 The Age of the 20-meter Solo River Terrace, Java, Indonesia and the Survival of *Homo erectus* in Asia. Plos ONE 6(6):E21562.
- Jensen, Arthur R., 1980 Uses of Sibling Data in Educational and Psychological Research. American Educational Research Journal 17(2):153–170.
- Jerison, H. J., 1973 Evolution of the Brain and Intelligence. New York: Academic Press.
- Jerison, H. J., 1982 Allometry, Brain Size, Cortical Surface, and Convolutedness. *In* Primate Brain Evolution. E. Armstrong and D. Falk, eds. pp. 77–84. New York: Plenum Press.
- Jerison, H. J., 1988 The Evolutionary Biology of Intelligence: Afterthoughts. *In* Intelligence and Evolutionary Biology. H. Jerison and I. Jerison, eds. Berlin: Springer-Verlag.
- Kappelman, John, 1996 The Evolution of Body Mass and Relative Brain Size in Fossil Hominids. Journal of Human Evolution 30:243–276.
- Krubitzer, Leah, 1995 The Organization of Neocortex in Mammals: Are Species Differences Really So Different? Trends in Neurosciences 18(9):408–417.
- Laursen, T. M., and T. Munk-Olsen, 2010 Reproductive Patterns in Psychotic Patients. Schizophrenia Research.
- Lieberman, Daniel E., 2011 The Evolution of the Human Head. Cambridge, MA: Belknap Press.
- Lovejoy, C. Owen, 1988 Evolution of Human Walking. Scientific American (November):118–125.
- Macleod, C. E., K. Zilles, A. Schleicher, J. K. Rilling, and K. R. Gibson, 2003 Expansion of the Neocerebellum in Hominoidea. Journal of Human Evolution 44(4):401–29.
- Martin, R. D., 1981 Relative Brain Size and Basal Metabolic Rate in Terrestrial Vertebrates. Nature 293:57–60.
- Mchenry, Henry M., 1992 Body Size and Proportions in Early Hominids. American Journal of Physical Anthropology 87:407–431.
- Murphy, William J., Pavel A. Pevzner, and Stephen J. O'Brien, 2004 Mammalian Phylogenomics Comes of Age. Trends in Genetics 20(12):631–639.
- Parenti, R., 1973 Quantitative and Qualitative Trends in Human Sapientization. Journal of Human Evolution 2:499–508.
- Petersson, Karl Magnus, Christian Forkstam, and Martin Ingvare, 2004 Artificial Syntactic Violations Activate Broca's Region. Cognitive Science 28:383–407.
- Posthuma, D., E. J. De Geus, W. F. Baaré, H. E. Hulshoff Pol, R. S. Kahn, and D. I. Boomsma, 2002 The Association between Brain Volume and Intelligence is of Genetic Origin. Nature Neuroscience 5(2):83–4.
- Posthuma, D., W. F. Baaré, H. E. Hulshoff Pol, R. S. Kahn, D. I. Boomsma, and E. J. De Geus, 2003 Genetic Correlations Between Brain Volumes and the WAIS–III Dimensions of Verbal Comprehension, Working Memory, Perceptual Organization, and Processing Speed. Twin Research 6(2):131–9.
- Preuss, T. M., 2006 Who's Afraid of *Homo sapiens*? Journal of Biomedical Discovery and Collaboration 1:17.
- Preuss, T. M., and G. Q. Coleman, 2002 Human-Specific Organization of Primary Visual Cortex: Alternating Compartments of Dense Cat-301 and Calbindin Immunoreactivity in Layer 4A. Cerebral Cortex 12(7):671–91.

- Radinsky, Leonard, 1974 The Fossil Evidence of Anthropoid Brain Evolution. American Journal of Physical Anthropology 41:15–28.
- Radinsky, Leonard, 1977 Early Primate Brains: Facts and Fiction. Journal of Human Evolution 6:79–86.
- Reader, S. M., and K. N. Laland, 2002 Social Intelligence, Innovation, and Enhanced Brain Size in Primates. Proceedings of the National Academy of Sciences of the USA 99(7):4436–41.
- Riese, Walther, and Hertha Riese, 1952 Investigations of the Brain Weight of the Baboon (*Papio papio* Desm.). Journal of Comparative Neurology 96(1):127–137.
- Rilling, J. K., 2006 Human and Nonhuman Primate Brains: Are They Allometrically Scaled Versions of the Same Design? Evolutionary Anthropology: Issues, News, and Reviews 15(2):65–77.
- Rilling, J. K., and T. R. Insel, 1998 Evolution of the Cerebellum in Primates: Differences in Relative Volume Among Monkeys, Apes and Humans. Brain, Behavior and Evolution 52(6):308–14.
- Rilling, J. K., and R. A. Seligman, 2002 A Quantitative Morphometric Comparative Analysis of the Primate Temporal Lobe. Journal of Human Evolution 42(5):505–33.
- Riska, B., W. R. Atchley, and J. J. Rutledge, 1984 A Genetic Analysis of Targeted Growth in Mice. Genetics 107:79–101.
- Rushton, J. P., and C. D. Ankney, 2009 Whole Brain Size and General Mental Ability: A Review. International Journal of Neuroscience 119(5):691–731.
- Sarich, Vincent M., 1987 A Molecular Approach to the Question of Human Origins. *In* Primate Evolution and Human Origins. R.L. Ciochon and J.G. Fleagle, eds. pp. 314–322. New York: Aldine De Gruyter.
- Schoenemann, P. Thomas, 1997 An MRI Study of the Relationship Between Human Neuroanatomy and Behavioral Ability. PhD Dissertation, University of California, Berkeley.
- Schoenemann, P. Thomas, 2006 Evolution of the Size and Functional Areas of the Human Brain. Annual Review of Anthropology 35:379–406.
- Schoenemann, P. Thomas, 2009 Evolution of Brain and Language. Language Learning 59(S1):162–186.
- Schoenemann, P. Thomas, Thomas F. Budinger, Vincent M. Sarich, and William S.–Y. Wang., 2000 Brain Size Does Not Predict General Cognitive Ability Within Families. Proceedings of the National Academy of Sciences of the USA 97(9):4932–7.
- Semaw, S., M. J. Rogers, J. Quade, P. R. Renne, R. F. Butler, M. Dominguez-Rodrigo, D. Stout, W. S. Hart, T. Pickering, and S. W. Simpson, 2003 2-6-Million-Year-Old Stone Tools and Associated Bones from OGS–6 and OGS–7, Gona, Afar, Ethiopia. Journal of Human Evolution 45(2):169–77.
- Semendeferi, K., A. Lu, N. Schenker, and H. Damasio, 2002 Humans and Great Apes Share a Large Frontal Cortex. Nature Neuroscience 5(3):272–6.
- Sherwood, C. C., and P. R. Hof, 2007 The Evolution of Neuron Types and Cortical Histology in Apes and Humans. *In* Evolution of Nervous Systems. H.K. Jon, ed. pp. 355–378. Oxford: Academic Press.
- Simons, Elwyn L., Erik R. Seiffert, Timothy M. Ryan, and Yousry Attia, 2007 A Remarkable Female Cranium of the Early Oligocene Anthropoid *Aegyptopithecus zeuxis* (Catarrhini, Propliopithecidae). Proceedings of the National Academy of Sciences of the USA 104(21):8731–8736.
- Smith, B. Holly, 1990 The Cost of a Large Brain. Behavioral and Brain Sciences 13:365–366.
- Smith, Richard J., 2005 Relative Size Versus Controlling for Size: Interpretation of Ratios in Research on Sexual Dimorphism in the Human Corpus Callosum. Current Anthropology 46(2):249–273.
- Spoor, F., M. G. Leakey, P. N. Gathogo, F. H. Brown, S. C. Antón, I. McDougall, C. Kiarie, F. K. Manthi and L. N. Leakey, 2007 Implications of New Early *Homo* Fossils from Ileret, East of Lake Turkana, Kenya. Nature 448(7154):688–91.

- Stephan, Heinz, Heiko Frahm, and Georg Baron, 1981 New and Revised Data on Volumes of Brain Structures in Insectivores and Primates. Folia Primatologica 35:1–29.
- Stroop, J. R., 1935 Studies of Interference in Serial Verbal Reactions. Journal of Experimental Psychology 18:643–662.
- Suwa, G., Berhane Asfaw, Reiko T. Kono, Daisuke Kubo, C. Owen Lovejoy, and Tim D. White, 2009 The *Ardipithecus ramidus* Skull and Its Implications for Hominid Origins. Science 326(5949):68e1–7.
- Szalay, F. S., 1969 Mixodectidae, Microsyopidae, and the Insectivore–Primate Transition. Bulletins of the American Museum of Natural History 140:193–330.
- Tuttle, Russel H., 1986 Apes of the World: Their Social Behavior, Communication, Mentality, and Ecology. Park Ridge, NY: William Andrew.
- Walker, Alan, Dean Falk, Richard Smith, and Martin Pickford 1983 The Skull of *Proconsul africanus*: Reconstruction and Cranial Capacity. Nature 305:525–527.
- White, T. D., Berhane Asfaw, Yonas Beyene, Yohannes Haile-Selassie, C. Owen Lovejoy, Gen Suwa, and Giday WoldeGabriel 2009 Ardipithecus ramidus and the Paleobiology of Early Hominids. Science 326(5949):75–86.
- Wu, X., Ralph L. Holloway, Lynne A. Schepartz, and Song Xing, 2011 A New Brain Endocast of *Homo erectus* from Hulu Cave, Nanjing, China. American Journal of Physical Anthropology 145(3):452–60.

A Companion to Paleoanthropology

Edited by David R. Begun

2013

A John Wiley & Sons, Ltd., Publication